Structure-based phylogenetic analysis of short-chain alcohol dehydrogenases and reclassification of the 17beta-hydroxysteroid dehydrogenase family.
نویسندگان
چکیده
Short-chain alcohol dehydrogenases (SCAD) constitute a large and diverse family of ancient origin. Several of its members play an important role in human physiology and disease, especially in the metabolism of steroid substrates (e.g., prostaglandins, estrogens, androgens, and corticosteroids). Their involvement in common human disorders such as endocrine-related cancer, osteoporosis, and Alzheimer disease makes them an important candidate for drug targets. Recent phylogenetic analysis of SCAD is incomplete and does not allow any conclusions on very ancient divergences or on a functional characterization of novel proteins within this complex family. We have developed a 3D structure-based approach to establish the deep-branching pattern within the SCAD family. In this approach, pairwise superpositions of X-ray structures were used to calculate similarity scores as an input for a tree-building algorithm. The resulting phylogeny was validated by comparison with the results of sequence-based algorithms and biochemical data. It was possible to use the 3D data as a template for the reliable determination of the phylogenetic position of novel proteins as a first step toward functional predictions. We were able to discern new patterns in the phylogenetic relationships of the SCAD family, including a basal dichotomy of the 17beta-hydroxysteroid dehydrogenases (17beta-HSDs). These data provide an important contribution toward the development of type-specific inhibitors for 17beta-HSDs for the treatment and prevention of disease. Our structure-based phylogenetic approach can also be applied to increase the reliability of evolutionary reconstructions in other large protein families.
منابع مشابه
A novel 17beta-hydroxysteroid dehydrogenase in the fungus Cochliobolus lunatus: new insights into the evolution of steroid-hormone signalling.
17beta-Hydroxysteroid dehydrogenase (17beta-HSD) from the filamentous fungus Cochliobolus lunatus (17beta-HSDcl) catalyses the reduction of steroids and of several o- and p-quinones. After purification of the enzyme, its partial amino acid sequence was determined. A PCR fragment amplified with primers derived from peptide sequences was generated for screening the Coch. lunatus cDNA library. Thr...
متن کاملHidden Markov model analysis of motifs in steroid dehydrogenases and their homologs.
The increasing size of protein sequence databases is straining methods of sequence analysis, even as the increased information offers opportunities for sophisticated analyses of protein structure, function, and evolution. Here we describe a method that uses artificial intelligence-based algorithms to build models of families of protein sequences. These models can be used to search protein seque...
متن کاملIsolation and characterization of novel human short-chain dehydrogenase/reductase SCDR10B which is highly expressed in the brain and acts as hydroxysteroid dehydrogenase.
Hydroxysteroid dehydrogenase belongs to the subfamily of short-chain dehydrogenases/reductases (SDR), and 11-beta-hydroxysteroid dehydrogenase catalyzes the interconversion of inactive glucocorticoids (cortisone in human, dehydrocorticosterone in rodents) and active glucocorticoids (cortisol in human, corticosterone in rodents). We report here the cloning and characterization of a novel human S...
متن کاملStructural and biochemical characterization of human orphan DHRS10 reveals a novel cytosolic enzyme with steroid dehydrogenase activity.
To this day, a significant proportion of the human genome remains devoid of functional characterization. In this study, we present evidence that the previously functionally uncharacterized product of the human DHRS10 gene is endowed with 17beta-HSD (17beta-hydroxysteroid dehydrogenase) activity. 17beta-HSD enzymes are primarily involved in the metabolism of steroids at the C-17 position and als...
متن کاملIntrinsic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities of human mitochondrial short-chain L-3-hydroxyacyl-CoA dehydrogenase.
The alcohol dehydrogenase (ADH) activity of human short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) has been characterized kinetically. The k(cat) of the purified enzyme was estimated to be 2. 2 min(-1), with apparent K(m) values of 280 mM and 22microM for 2-propanol and NAD(+), respectively. The k(cat) of the ADH activity was three orders of magnitude less than the l-3-hydroxyacyl-CoA dehy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 18 12 شماره
صفحات -
تاریخ انتشار 2001